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Abstract

In financial markets with asymmetric information, traders may
have an incentive to forgo profitable deals today in order to preserve
their informational advantage for future deals. This sort of manipula-
tive behaviour has been studied in markets with one informed trader
(Kyle 1985, Chakraborty and Yilmaz 2004). The effect is slower social
learning. Using an extension of Glosten and Milgrom’s (1985) trad-
ing model, we study this effect in markets with N informed traders.
As N grows large, each trader’s price impact subsides, and so does
manipulation in equilibrium. However, the impact of manipulation on
social learning can be increasing in N . As N increases, each trader in-
dividually manipulates less. But nonetheless, the increased number of
manipulative actions introduces enough noise to exacerbate the impact
of manipulation on learning.
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1 Introduction

When a trader receives a favourable tip about a stock, she usually wants
to buy it. Buying a lot straight away would give a strong signal of her tip
to the market and erode her informational advantage. Thus she may forgo
profitable deals today to preserve more of her advantage for future deals.
This could be described as price manipulation. It is important for economists
and policy-makers to understand price manipulation incentives, because they
slow down learning and information revelation in financial markets and make
financial cycles more persistent. The existing theoretical literature on the
issue concentrates on the stylised case with a single informed trader. The
contribution of this paper is to examine whether manipulation incentives
prevail when there are several informed traders in the market.

We study a new extension of the Glosten-Milgrom (1985) model, where N
traders each get two chances to place orders with competitive but uninformed
dealers. Each trader is either informed, and receive good or bad news, or a
noise trader. The dealers do not know what type they are facing. Our main
results are as follows:

1. In equilibrium, traders often engage inmanipulative behaviour by choos-
ing not to trade in the first round. They pretend to be noise traders
and, in doing so, avoid unfavourable price movements by slowing down
the learning process of dealers. They forgo a profitable first-round deal,
but the price effect justifies this. The degree of price manipulation is
decreasing in N and eventually drops to zero, since one trader’s poten-
tial price impact is diminished when others are in the market.

2. The adverse impact of manipulation on social learning, measured rela-
tive to a non-manipulative benchmark, may be increasing in N . In our
baseline numerical example, the impact is strongest in markets with
about six traders. When manipulation falls a little but does not drop
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to zero, its impact on learning is exacerbated because there are now
more signals which it can cloud.

3. Manipulation is less pronounced in markets with a lot of noise or high
quality information signals, because both factors reduce the potential
price impact while increasing the profitability of first-round deals, thus
discouraging manipulation.

We fully characterise the equilibrium of our model, showing which kinds of
manipulative strategies traders may adopt. In particular, traders will en-
gage in ’weak manipulation’, which involves not trading at all when they
receive news. There is no ’strong manipulation’, which involves loss-making
trades. We also analytically derive limiting results showing that price manip-
ulation disappears as N grows large and as the amount of information in the
markets gets close to zero. We then use numerical solutions to investigate
exact comparative statics, the impact of the quality of information on price
manipulation, and the impact of price manipulation on social learning.

The most closely related study to ours is Chakraborty and Yilmaz (2004).
They show that in an extended Glosten-Milgrom model, a single informed
trader with good news will manipulate by selling today if the time horizon is
long enough, giving him enough opportunities to profit in the future. They
consider an agent to manipulate prices when he engages in loss-making deals,
which is called ’strong manipulation’ in our paper. Their main result rules
out non-manipulative behaviour under certain conditions. Strong manipu-
lation does not occur in our model because we restrict the time horizon to
two periods. We expect that similar results to ours would prevail with the
stronger definition if the time horizon were longer.

Price manipulation we study can slow down learning in financial markets.
News gets absorbed into prices slowly when traders follow manipulative
strategies. This has interesting implications for real world markets. For
example, consider a situation where rational traders discover a stock price
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bubble. Abreu and Brunnermeier (2003) show that they may fail to coordi-
nate, thus allowing the bubble to last for a while. However, once the rational
traders do attack in their model, the bubble bursts instantly. Historical expe-
rience (Kindleberger and Aliber 2011) suggests that the deflation of bubbles
is a drawn-out process that starts slowly and then accelerates, rather than
an instant crash. Slow learning, as generated by our model, could play a role
in explaining this discrepancy.

Of course, slow learning has been explained through many other channels.
We refer the reader to Chamley (2004) and Brunnermeier (2001) for more
comprehensive surveys. Most prominently, rational traders may ’follow the
herd’, ignoring their own signals and slowing down the revelation of informa-
tion. The most famous illustration is Bikhchandani, Hirshleifer and Welch
(1992). It was long believed that the herding effect is wiped out in a financial
market with efficient pricing, such as the Glosten-Milgrom model, due to the
negative results of Avery and Zemsky (1998). However, Park and Sabourian
(2011) shows that herding may prevail in a Glosten-Milgrom model with a
general signal structure under special circumstances, which are fully charac-
terised in their paper. In our model, herding effects are switched off due to
a binary signal structure. Our model should be seen as complementary to
herding models in explaining slow learning in financial markets.

The trade-off between first-round and second-round trades in our model is
reminiscent of games of delayed investment and endogenous timing. For in-
stance, in Chamley and Gale (1994), Agents trade off the opportunity cost of
waiting to invest against the benefit of learning from others’ actions. Similar
reasoning has been applied to financial market settings by Smith (2000) and
Malinova and Park (2012), and this is another important explanation of slow
social learning. Note, however, that the trade-off is different in our model -
traders have two chances to invest, and trade off the opportunity of placing
two profitable orders against the cost of giving away information through the
first one.
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The definition of price manipulation considered here is weak compared to
other definitions in the literature. Importantly, the manipulative strategies
used by players in our model would not be considered unlawful (see Kyle
(2008) for a discussion of the legal dimension). Also, they do not involve
insider trading or the release of false information (see Allen and Gale (1992)
for a review of papers on such strategies).

A related definition to ours is considered by Allen and Gale (1992). They
show that uninformed traders may manipulate prices by emulating the be-
haviour of informed traders. The effect we examine is the opposite, and
complementary for understanding information in markets. Whereas in their
model, bogus information is ’learned’ by the market, real information fails
to be learned in ours.

Section 2 sets up the model and defines the equilibrium concept. Section 3
fully characterises equilibrium play analytically. Section 4 contains analyti-
cal and numerical results on comparative statics, including the effect of the
number of traders on price manipulation in equilibrium. Section 5 analyses
the impact of price manipulation on social learning. Section 6 concludes.

2 The environment

2.1 The model

We study a market which is open for two trading rounds t ∈ {1, 2}. There
is one asset, which yields a random cash flow of V ∈ {0, 1} per unit after
the end of the second round. Both realisations are equally likely ex ante:
P [V = 0] = P [V = 1] = 1

2
.1

1Abandoning this assumption would complicate the analysis, since the equilibrium
would no longer involve fully symmetric action rules. However, we do not expect it to
change our qualitative conclusions.
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Trade timing. There are N traders and M > N dealers, and everybody is
risk-neutral. The timing in round t is as follows.

1. Each trader is assigned to one dealer by some (potentially random)
matching mechanism.

2. Each trader i calls ’his’ dealer, who quotes him an ask price Ait and a
bid price Bi

t.

3. Each trader submits an order X i
t to his dealer. The allowed orders are:

buy one unit at the ask price (written X i
t = b), hold (X i

t = h) or sell
at the bid price (X i

t = s).

4. The trades
(
X1
t , .., X

N
t

)
become public information.

Information. Each trader is informed with probability µ, and a noise
trader with probability (1− µ). Each trader learns his information status
(i.e. whether he is informed or a noise trader) at t = 1, and it does not
change thereafter. His information status is independent of the information
status of others, and of all other random variables considered here.

If i is informed, he receives a signal Si ∈ {0, 1} at t = 1, and no further
signals at t = 2. The precision of each informed trader’s signal is q =

P [Si = v|V = v] > 1
2
for v ∈ {0, 1}. Thus, Si = 1 is good news and Si = 0 is

bad news. Conditional on V , traders’ signals are independent of each other.

To summarise the information of trader i, we define the random variable Ωi as
follows: Ωi = g if i has good news, i.e. in the event {i is informed ∩ Si = 1},
I i = b in the event {i is informed ∩ Si = 0}, and Ωi = n in the event that i
is a noise trader.

Histories. The history of orders before round 1 is H1 = Ø. The history of
orders before round 2 is H2 =

(
X1

1 , ..., X
N
1

)
∈ {b, h, s}N . The final history of

orders before the end of the game is H3 =
(
X1
t , ..., X

N
t

)
t∈{1,2} ∈ {b, h, s}

2N .
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For any trader i, the history of actions of other traders before round t is
H−it ∈ {b, h, s}

N−1. All dealers and traders know the history of orders before
every round.

Pricing. The dealers’ prices are set at a competitive level, for reasons ex-
ogenous to the model. By competitiveness, we mean that they make zero
expected profits from both buy and sell orders.2 Hence, prices satisfy

Ait = E
[
V |Ht, X

i
t = b

]
(1)

Bi
t = E

[
V |Ht, X

i
t = s

]
Note that dealers know the identity of the traders to whom they are quoting
prices. Hence, not all traders will be quoted the same prices. A trader’s past
actions influence dealers’ belief about his signals, and therefore the prices he
will be quoted today.

One final piece of notation will be useful. In the first round, no trader knows
exactly what prices he will be quoted in the second, because he does not
know the actions of others, which affect market learning. The second-period
prices trader i expects to be quoted, having placed the order x in the first
period and received information Ωi, are defined as

Āi2 (ω, x) = E
[
Ai2|Ωi = ω,X i

1 = x
]

(2)

B̄i
2 (ω, x) = E

[
Bi

2|Ωi = ω,X i
1 = x

]
2Assuming exogenous competitive price setting follows Glosten and Milgrom (1985).

By making dealers’ actions exogenous, we eliminate the need to specify responses to non-
competitive price setting as part of traders’ strategies, which simplifies the analysis. An
easy way to make these price setting rules arise endogenously would be to assume that each
trader is assigned to two dealers, both of whom quote him bid and ask prices. Bertrand
competition between each trader’s two dealers implies zero profits.
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2.2 Strategies and equilibrium

The behaviour of noise traders is exogenously given. In each round, a noise
trader buys, holds or sells with equal probabilities. A noise trader’s ac-
tions are independent across periods, and independent of the actions of other
traders. We now describe the strategic behaviour of informed traders.

Action rules. An action rule for trader i contingent on an event is a
probability distribution over the action set {b, h, s}. An action rule specifies
whether, upon observing the event, trader i buys, hold, sells or randomises.

Strategies. A strategy for trader i prescribes what informed traders will do
in every possible state of information. Formally, a strategy for i consists of

1. First-period action rules contingent on the events Ωi = g and Ωi=b (i.e.
two action rules).

2. Second-period action rules contingent on the events {Ωi = g ∩H2 = h2}
and {Ωi = b ∩H2 = h2} for all h2 ∈ {b, h, s}N (i.e. 2 ×

(
3N
)
action

rules).

A strategy profile contains a strategy for each trader. We restrict attention
to symmetric strategy profiles. The properties of a symmetric strategy profile
are that every trader has the same action rules, and that their action rules
contingent on bad news are the mirror image of their action rules contingent
on good news. The action rules specified by a symmetric strategy profile
satisfy the following for t = 1, 2 and all i

P
[
X i
t = 0|Ωi = g,Ht

]
= αt = P

[
X i
t = 0|Ωi = b,Ht

]
(3)

P
[
X i
t = −1|Ωi = g,Ht

]
= βt = P

[
X i
t = 1|Ωi = b,H2

]
P
[
X i
t = 1|Ωi = g,Ht

]
= 1− αt − βt = P

[
X i
t = −1|Ωi = b,Ht

]
Equilibrium. A Symmetric Perfect Bayesian Equilibrium (henceforth sim-
ply called ’equilibrium’ ) is a symmetric strategy profile such that
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1. No informed trader can increase their expected payoff by deviating
from the action rules specified by his strategy, taking competitive price
setting behaviour of dealers as given.

2. The beliefs of dealers used to set competitive prices are formed by
Bayesian updating, consistent with the action rules specified by traders’
strategies.

3 Equilibrium behaviour

Informed traders in the standard Glosten-Milgrom model ’follow their signal’.
That is, traders with good news buy with probability 1 and traders with bad
news sell with probability 1. Things are different in our model. Consider a
trader with good news deciding what order to place in the first round. By
Lemma 1, his valuation exceeds the ask price, so buying would be profitable
for him.

However, given then chance to trade again, the trader with good news may
prefer to hold or sell. Doing so means forgoing a profitable trade or even
making a loss, so why would he do so? Because these orders, typical of
traders with bad news and noise traders, may be perceived as negative signals
by dealers and depress future prices. Because he knows he will buy in the
second round, he may be able to secure himself a better deal by not buying
now. This is the price manipulation incentive this paper focuses on.

Recall from the definition of symmetric strategy profiles in Equation (3)
that βt is the probability that a trader places an order ’against his signal’
in round t. We call this strong manipulation, which involves placing a loss-
making order to manipulate prices. αt is the probability that a trader does
not trade despite having received a signal. We call this weak manipulation,
which merely inolves forgoing a profitable deal to manipulate prices.
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The following result states that market prices quoted to i will always lie
below i’s current asset valuation if i has good news (Ωi = g), and above it if
i has bad news (Ωi = b).

Lemma 1. For t = 1, 2 and all i, we have

E
[
V |Ht,Ω

i = b
]
< Ait < E

[
V |Ht,Ω

i = g
]

E
[
V |Ht,Ω

i = b
]
< Bi

t < E
[
V |Ht,Ω

i = g
]

Proof. See Appendix A

The following result will be useful for analysing trading strategies. It states
that at t = 1 each trader has a limited impact on the prices he expects to be
quoted at t = 2.

Lemma 2. For all orders x, x′ ∈ {−1, 0, 1} and all ω ∈ {g, b}, we have

Āi2 (ω, x)− Āi2 (ω, x′) < 2q − 1

B̄i
2 (ω, x′)− B̄i

2 (ω, x′) < 2q − 1

Proof. See Appendix A.

Now, a backward induction argument helps us to establish that in the second
period, there is no manipulation. Because the order at t = 2 is each traders’
last action, he has no strategic considerations except for comparing the prices
he is quoted to what he thinks the asset is worth. By Lemma 1, he will always
consider the asset more valuable than the ask price, and hence buy it, if he
has good news. Conversely, he will always sell if he has bad news.

Proposition 1. In any equilibrium, α2 = β2 = 0.

Proof. See Appendix A.
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Chakraborty and Yilmaz (2004) show that when a single informed trader gets
to act repeatedly, he will engage in strong manipulation if the time horizon
is long enough. It turns out that two periods are never long enough, and the
most we are going to find in equilibrium is weak manipulation.

Proposition 2 formalises this idea. The logic of the proof is instructive. The
costs of strong manipulation are considerable, since one has to place a loss-
making order in the first period. Thus strong manipulation can only occur
in equilibrium if the benefits of manipulation, embodied in the price impact
of the manipulative action, are very high. But we demonstrated in Lemma
2 that the price impact is inherently limited. This limit is sufficient to rule
out strong manipulation in equilibrium.

Proposition 2. In any equilibrium, β1 = 0.

Proof. Assume that β1 > 0. Suppose a trader with good news deviates from
her strategy at t = 1 by buying with probability 1 − α1 and holding with
probability α1. Since by Proposition 1, she will buy with probability 1 in the
second round, this deviation gives her an expected profit of

α1

[
q − Āi2 (g, h)

]
+ (1− α1)

[
2q − Ai1 − Āi2 (g, b)

]
Following her strategy yields a profit of

α1

[
q − Āi2 (g, h)

]
+ β1

[
Bi

1 − Āi2 (g, s)
]

+ (1− α1 − β1)
[
2q − Ai1 − Āi2 (g, b)

]
Hence the gain from deviating is

β1
[
2q −

(
Ai1 +Bi

1

)
−
(
Āi2 (g, b)− Āi2 (g, s)

)]
Symmetric strategies imply that Ai1 = 1−Bi

1, so that by Lemma 1, the gain
is strictly positive. This profitable deviation contradicts equilibrium.
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Now we know that in the first period, informed traders either follow their sig-
nal or hold (i.e. weakly manipulate) in equilibrium. An equilibrium can then
be described by the single parameter α1 ∈ [0, 1] specifying the probability
of weak manipulation at t = 1. The equilibrium value of α1 is a convenient
measure of the degree of price manipulation. The higher it is, the less likely
informed traders are to follow their signals in the first round.

Take an equilibrium described by α1, and consider the incentives of a trader
with good news in the first period. He believes the asset to be worth q. Also,
he will definitely buy in the second round, and expects to execute this trade
at the ask price Āi2 (g, b) if he places order x ∈ {b, h, s} in the first round.
Hence holding gives him an expected payoff of q − Āi2 (g, h), whereas buying
gives him

2q − Ai1 − Āi2 (g, b)

. The two payoffs depend on the strategy α1 through the prices, which are
formed by Bayesian updating given strategies. Define G (α1) as the difference
between the two:

G (α1) ≡
[
Āi2 (g, b)− Āi2 (g, h)

]
−
[
q − Ai1

]
(4)

= price impact − profit lost

G neatly summarises the incentives to manipulate for a trader with good
news. The cost of manipulation is the profit lost by not buying today. The
benefit is the negative impact manipulation has on the expected ask price
tomorrow. The trader strictly prefers to buy if G < 0, is indifferent if G = 0

and strictly prefers to manipulate, i.e. hold, if G > 0.

Now consider the incentives of a trader with bad news. Holding gives him
B̄i

2 (b, h) − (1− q), whereas selling gives him Bi
1 + B̄i

2 (b, s) − 2 (1− q). Let
Ĝ (α1) ≡

[
B̄i

2 (b, h)− B̄i
2 (b, s)

]
− [B − (1− q)]. He strictly prefers selling if

Ĝ < 0, is indifferent when Ĝ = 0 and strictly prefers holding if Ĝ > 0. The
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symmetry of the model and the strategies allow us to derive the following
result:

Lemma 3. In a symmetric equilibrium, the manipulation incentives given
good and bad news are exactly the same, or G = Ĝ.

Proof. See Appendix A.

Lemma 3 is the reason why we can find symmetric equilibria - if traders with
good and bad news didn’t have the same incentives, it would not be optimal
for them to play the same strategy. We can now completely characterise
symmetric equilibria and prove their existence.

Proposition 3. There exists an equilibrium. Furthermore, α1 describes an
equilibrium if and only if one of the following holds:

1. G (α1) = 0 and α1 ∈
(
0, 1

2

)
.

2. G (α1) ≤ 0 and α1 = 0.

Proof. We start with the second part of the proposition.

(i) “only if ” direction. Let α1 describe a symmetric equilibrium. Firstly,
suppose α1 ≥ 1

2
. Then equilibrium requires that G (α1) ≥ 0. But in this

case, a hold followed by a buy is ’better news’ from the perspective of the
market maker than two consecutive buys. It follows that Āi2 (g, h) > Āi2 (g, b)

and henceG (α1) < 0, contradicting equilibrium. Secondly, suppose 0 < α1 <
1
2
. Then a trader with good news must be indifferent between holding and

buying, so that G = 0 and the first condition holds. Finally, suppose α1 = 0.
Then we must have G (α1) ≥ 0 and the second condition holds.

(ii) “if ” direction. If one of the statements holds, then by construction, a
trader with good news has no profitable deviation from α. For a trader with
bad news, optimality follows from the fact that G = Ĝ.
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To show existence, suppose the second statement holds. If G (0) ≤ 0, then
α1 = 0 is an equilbrium by the second condition. If G (0) > 0, note that G
is continuous in α1 and that G

(
1
2

)
< 0. Hence, there exists an α1 satisfying

the first condition.

4 Comparative statics

One of the key questions of the paper is how the number of traders (N) affects
the equilibrium degree of price manipulation (α1). Another interesting issue
is how the information structure affects α1. The parameter µ captures the
quantity of information in the market because it measures what proportion
of traders is informed on average. The parameter q measures the precision
of their signals, which captures the quality of information. We now consider
each of these parameters in turn.

4.1 The number of traders N

As the number of traders grows large, we would expect incentives to manip-
ulate prices eventually disappear. As Equation (4) illustrates, the incentives
to manipulate are strong when the lost profits from not trading in the first
round are small, or when a trader’s individual price impact is large. The
price impact vanishes as N becomes large, whereas the lost profits are al-
ways strictly positive.

To prove this formally, we first use the law of large numbers to show that
i’s expected ask price Āi2 (ω, x) converges to a fixed quantity as N → ∞,
regardless of the order x that he placed in the first round. When dealers
observe a large number of first-period orders other than i’s, a single order
from i cannot move their beliefs by much.
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Lemma 4. For all ω ∈ {g, b, n} and all x ∈ {b, h, s},

lim
N→∞

Āi2 (ω, x) = P
[
V = 1|Ωi = ω

]
Proof. See Appendix A.

Next, we confirm that price manipulation in equilibrium does indeed disap-
pear as N gets large.

Proposition 4. For given parameters µ and q, there exists an integer N̄
such that when N > N̄ , the only equilibrium is α1 = 0.

Proof. Suppose not. Let αmax1 be the largest value of α1 that describes an
equilibrium in a market with N traders. Then for all N0 there exists an
N > N0 with αmax1 > 0. By Proposition 3, αmax1 > 0 implies G (αmax1 ) = 0.
We find a contradiction by showing that (taking a convergent subsequence if
necessary), limN→∞G (αmax1 ) < 0.

By Lemma 4, the ’price impact’ term in G (αmax1 ) converges to zero. But
then G (αmax1 ) converges to the same limit as − [q − Ai1], which is strictly
negative as long as µ > 0.

In general, the equilibrium conditions in Proposition 3 are highly non-linear
in the strategy α1, and the equilibrium cannot be solved for analytically.
Hence, use numerical solutions to evaluate how exactly the degree of price
manipulation depends on N .3 Appendix C explains the computations in-
volved.

Figure 1 shows that the degree of price manipulation is decreasing in N .
This can again be explained intuitively by examining the characterisation of

3This is relatively uncontroversial in our context, because our model only has three
parameters and the robustness of the numerical results can be verified quite generally by
considering different parameterisations. Also, although we have not proved uniqueness of
equilibrium, all our numerical solutions yielded a unique equilibrium, which is the one we
report here.
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Figure 1: The degree of price manipulation and the number of traders1
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1 Based on µ = 0.5 and q = 0.75.

manipulation incentives in Equation (4). An individual trader’s price impact
declines as N grows. However, lost profits are not affected by the number of
other traders: When first-round prices are quoted, dealers have not observed
any actions of other traders.

However, the figure also illustrates that the rate of decline of the degree of
price manipulation is quite slow. α1 appears to decline approximately linearly
as N grows. For instance, in order to halve the degree of price manipulation,
one would have to increase N from one to seven. In order to eliminate it
altogether, one would have to set N ≥ 12.
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4.2 The quantity (µ) and quality (q) of information

As the quantity of information diminishes, we would again expect the in-
centives to manipulate prices to disappear. Intuitively, if a dealer thinks it
unlikely that traders have information, then he will not pay much attention
to trades when setting prices. Hence, the price impact term in Equation
(4) vanishes, whereas the lost profits remain strictly negative. We have the
following result:

Proposition 5. For given parameters N and q, there exists a µ̄ ∈ (0, 1) such
that when µ < µ̄, the only equilibrium is α1 = 0.

Proof. Suppose not. Let αmax1 be the largest value of α1 that describes an
equilibrium in a market with N traders. Then for µ0, there exists a µ < µ0

with αmax1 > 0. By Proposition 3, αmax1 > 0 implies G (αmax1 ) = 0. We find a
contradiction by showing that (taking a convergent subsequence if necessary),
limµ→0G (αmax1 ) < 0.

Applying Bayes’ rule to the competitive prices in Equation (1), we find that
ask prices quoted to trader i satisfy

Ait =
1

1 +
P [Ht,Xi

t=1|V=0]
P [Ht,Xi

t=1|V=1]

Let χ denote the event that everybody is a noise trader. We have P [χ] =

(1− µ)N , which converges to 1 as µ→ 0. So for all v, P [Ht, X
i
t = 1|V = v]

converges to

P
[
Ht, X

i
t = 1|V = v, χ

]
=

1

3(t−1)N+1

Hence it follows that Ait → 1
2
with probability 1. Hence it follows from

Equation (4) that G (αmax1 )→ −
[
q − 1

2

]
< 0 as required.
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Figure 2: The degree of price manipulation and the amount of information1
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1 Based on q = 0.75.

Again, we show how exactly the degree of price manipulation α1 depends
on µ using numerical solutions. Figure 2 shows that it is increasing in µ -
there is less manipulation in noisy markets. When there is very little noise
(high µ), the lost profits are small because the informational advantage of
an informed trader is small, and the price impact is large because actions
contain a lot of information.

We also use numerical solutions to show how the degree of price manpula-
tion α1 depends on the quality of information q. Figure 3 shows that it is
decreasing in q, except in the case with one trader, where it does not depend
on q. There is less manipulation when information is good.
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Figure 3: The degree of price manipulation and the quality of information1
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The intuition is slightly less obvious. Note that lost profits are small when
information is bad (low q), again because an informed trader has a smaller
informational advantage over dealers. But we would also expect bad in-
formation to reduce a trader’s price impact because actions contain little
information. Which effect dominates? It turns out that they exactly cancel
each other out for the case with one trader. But the second effect becomes
weaker with several traders: The price impact is diminished by the presence
of others anyway, so that the quality of information becomes less important.
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5 Social learning

Another central question of this paper is how the price manpulation incen-
tives we have studied affect social learning in financial markets. Clearly,
manipulation has an adverse impact on social learning because it means that
actions will be less correlated with signals and therefore not contain as much
information about the true value.

Let us start by finding a measure of social learning more precise. The public
belief after the round t is

Pt = E
[
V |
(
X1
s , ..., X

N
s

)
s≤t

]
(5)

= E [V |Ht+1]

This is an uninformed agent’s valuation of the asset, having observed traders’
orders up to t. It is a random variable, since it depends on trades, and can
be interpreted as a statistical estimator for V .

Our measure of social learning is the mean-square error of the post-trade
belief. It captures the precision of the uninformed agent’s estimate of V
after observing trades.4 We define it as

MSE (Pt) = E
[
(Pt − V )2

]
(6)

The formulae necessary to calculate this are explained in Appendix B.

We now set up non-manipulative benchmark, to which we will compare equi-
librium behaviour. We calculate what social learning would be if traders
had non-manipulative strategies in equilibrium (α1 = 0). To see why this
is sensible, suppose we replaced our traders by two identical generations of

4Note that the post-trade belief, being the conditional expectation of V , is already the
minimum mean-square error estimator of V . Hence its mean-square error measures how
well the public can possibly do in estimating V after observing trades.
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short-lived traders who only get to place one order, thus wiping out any
manipulative incentives. Then, as in the standard Glosten-Milgrom setting,
every trader would follow their signal, which corresponds to the strategy
α1 = 0. Changing α1 to zero will affect the way an uninformed agent learns
from market data, and hence the post-trade will not be equal to Pt. We
denote the post-trade belief in the benchmark setting by P 0

t .

Our measure of the impact price manipulation incentives have on social learn-
ing is the percentage impact of manipulation on social learning, which was
previously defined as the MSE of post-trade beliefs. It is defined as

Πt = 100

(
MSE (Pt)

MSE (P 0
t )
− 1

)
(7)

Figure 4 shows the impact of price manipulation on social learning Πt as
a function of N . For both periods, the impact is increasing in N over a
significant range and peaks at around N = 5. This is in contrast to our
results in Section 4, which showed that the degree of price manipulation α

was monotonically decreasing in N . In other words, while the presence of
more traders decreases manipulation incentives, it may increase their impact
on social learning.

This result is counterintuitive at first glance. Let us disentangle the different
effects behind it. When we add an extra trader, we add an extra signal from
which the public can learn by observing trades. Also, in our model, manip-
ulation incentives decrease, improving the informational content of traders.
It is clear that both effects improve social learning.

But when we think about social learning relative to the benchmark, there are
two counteracting forces.

1. The benefit of the extra signal is stronger in the benchmark without
manipulation, because the information content of the new trader’s or-
ders is higher. Hence learning relative to the benchmark worsens, and
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Figure 4: The impact of price manipulation on social learning1
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the ratio MSE(Pt)

MSE(P 0
t )

rises, driving up the impact measure Πt. This force
is strongest for low values of N because this is when manipulation is
most prevalent.

2. The benefit of reduced manipulation incentives is non-existent in the
benchmark, because the degree of manipulation is already zero. Hence
learning relative to the benchmark improves, driving down Πt. This
force is strongest for high values of N because manipulation incentives
are close to zero.

These two forces help us rationalise the inverse-U shape observed in Figure
4. For low values of N , the first force dominates, driving up the impact of
manipulation on learning. The opposite is true for high N .

6 Conclusion

Our analysis shows that price manipulation incentives can be important,
even when there are several informed traders. When we consider markets
with large numbers of traders, these incentives disappear. But in markets
with intermediate numbers of traders, they remain important. Importantly,
their impact on social learning is often larger than in it would be in a market
with one trader.

The main conclusion of this paper is therefore that manipulation incentives
should be taken seriously when thinking about learning in financial markets in
general, and financial boom and bust cycles in particular. The argument that
they are only relevant in stylised models with monopolistic traders should be
applied with caution.

We have also shown some interesting links between manipulation incentives
and other elements of the market structure. One needs to be less wary of
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manipulation incentives in markets that are considered very noisy, and in
markets where the information is considered to be very precise.

This paper is only a first step towards understanding manipulation incentives
and their impact on learning with several traders. It provides a motivation
for further research on the issue. Firstly, one could extend the analysis to a
model with more than two trading rounds. This might strengthen manipu-
lation incentives as there would be more future prices to manipulate, like in
Chakraborty and Yilmaz (2004). However, it is a challenging project since
the characterisation of equilibrium strategies becomes very complex. Sec-
ondly, one could examine whether similar effects prevail in different models
of market microstructure, such as limit order markets.
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Appendix

A Proofs

Lemma 1

Lemma. For t = 1, 2 and all i, we have

E
[
V |Ht,Ω

i = b
]
< Ait < E

[
V |Ht,Ω

i = g
]

E
[
V |Ht,Ω

i = b
]
< Bi

t < E
[
V |Ht,Ω

i = g
]
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Proof. From the pricing Equations in (1), we have Ait = E [V |Ht, X
i
t = b]

and Bi
t = E [V |Ht, X

i
t = s]. It is sufficient to show that

E
[
V |Ht,Ω

i = b
]
< E

[
V |Ht, X

i
t

]
< E

[
V |Ht,Ω

i = g
]

. Firstly, by the law of iterated expectations, and using Lemma B.5,

E
[
V |Ht, X

i
t

]
= E

[
E
[
V |Ht, X

i
t ,Ω

i
]
|Ht, X

i
t

]
= E

[
E
[
V |Ht,Ω

i
]
|Ht, X

i
t

]
=

∑
ω∈{g,b,n}

P
[
Ωi = ω|Ht, X

i
t

]
E
[
V |Ht,Ω

i = ω
]

< E
[
V |Ht,Ω

i = g
]

An identical argument shows that E [V |Ht, X
i
t ] > E [V |Ht,Ω

i = b], which
completes the proof.

Lemma 2

Lemma. For all orders x, x′ ∈ {−1, 0, 1} and all ω ∈ {g, b}, we have

Āi2 (ω, x)− Āi2 (ω, x′) < 2q − 1

B̄i
2 (ω, x′)− B̄i

2 (ω, x′) < 2q − 1

Proof. Let Ai2 (x) = E
[
V |H−i2 , X i

1 = x, X i
2 = 1

]
, which is the second-period

ask price i will be quoted having placed order x in the first round. By Lemmas
1 and B.5, we know that for all x,

E
[
V |H−i2 ,Ωi = b

]
< Ai2 (x) < E

[
V |H−i2 ,Ωi = g

]
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Hence it follows from (3.) in Lemma B.5 that for all x and x′

Ai2 (x)−Ai2 (x′) < 2q − 1

with probability 1. Finally, observe that

Āi2 (ω, x)− Āi2 (ω, x′) = E
[
Ai2|Ωi = ω,X i

1 = x
]
− E

[
Ai2|Ωi = ω,X i

1 = x′
]

= E
[
Ai2 (x)−Ai2 (x′) |Ωi = ω

]
< 2q − 1

Next, let Bi2 (x) = E
[
V |H−i2 , X i

1 = x, X i
2 = −1

]
. Repeating the above argu-

ment shows that for all x and x′, Bi2 (x)−Bi2 (x) < 2q − 1 with probability 1,
and that

B̄i
2 (ω, x)− B̄i

2 (ω, x′) = E
[
Bi2 (x)− Bi2 (x′) |Ωi = ω

]
< 2q − 1

Proposition 1

Proposition. In any equilibrium, α2 = β2 = 0.

Proof. Assume that α2 > 0 or β2 > 0 for some history h2 ∈ {b, h, s}N .
Suppose a trader with good news deviates from her strategy at h2 by buying
with probability 1. This deviation gives her an expected continuation profit
of

E
[
V − Ai2|H2 = h2,Ω

i = g
]
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Following her strategy yields a profit of

β2 ·E
[
Bi

2 − V |H2 = h2,Ω
i = g

]
+(1− α2 − β2) ·E

[
V − Ai2|H2 = h2,Ω

i = g
]

Hence the gain from deviating is

(α2 + β2)E
[
V − Ai2|H2 = h2,Ω

i = g
]

+ β2E
[
V −Bi

2|H2 = h2,Ω
i = g

]
which is strictly positive by Lemma 1. This profitable deviation contradicts
equilibrium

Lemma 3

Lemma. In a symmetric equilibrium, the manipulation incentives given good
and bad news are exactly the same, or G = Ĝ.

Proof. Firstly, note that in a symmetric equilibrium, Ai1 +Bi
1 = 1 and hence

Bi
1 − (1− q) = q − Ai1. It is then sufficient to show that

Āi2 (g, b)− Āi2 (g, h) = B̄i
2 (b, h)− B̄i

2 (b, s)

Let Ai2 (h, x) = E
[
V |H−i2 = h,X i

1 = x, X i
2 = 1

]
, which is the second-period

ask price i will be quoted having placed order x in the first round if other
traders place orders h ∈ {b, h, s}N−1. Hence we need to show that∑

h∈{b,h,s}N−1

P
[
H−i2 = h|Ωi = g

] [
Ai2 (h, b)−Ai2 (h, h)

]
=

∑
h∈{b,h,s}N−1

P
[
H−i2 = h|Ωi = b

] [
Bi2 (h, h)− Bi2 (h, s)

]

For any history h =
(
Xj

1

)
j 6=i of first-round orders from traders other than i,
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define the ’inverse history ĥ =
(
X̂j

1

)
j 6=i

as follows:

X̂j
1 =


b if Xj

1 = s

h if Xj
1 = h

s if Xj
1 = b

Note that h→ ĥ is a one-to-one mapping from {b, h, s}N−1 into itself, so that
for any function g : {b, h, s}N−1 → R, we have∑

h∈{b,h,s}N−1

g (h) =
∑

h∈{b,h,s}N−1

g
(
ĥ
)

(8)

Moreover, it can be shown that due to the symmetry of strategies,

Ai2 (h, b)−Ai2 (h, h) = Bi2 (h, h)− Bi2 (h, s)

and
P
[
H−i2 = h|Ωi = g

]
= P

[
H−i2 = ĥ|Ωi = b

]
Multiply the last two equalities by each other and sum up over all histories
to obtain ∑

h∈{−1,0,1}N−1

P
[
H−i2 = h|Ωi = g

] [
Ai2 (h, b)−Ai2 (h, h)

]
=

∑
h∈{−1,0,1}N−1

P
[
H−i2 = ĥ|Ωi = b

] [
Bi2
(
ĥ, h
)
− Bi2

(
ĥ, s
)]

Now the result follows from (8).
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Lemma 4

Lemma. For all ω ∈ {g, b, n} and all x ∈ {b, h, s},

lim
N→∞

Āi2 (ω, x) = P
[
V = 1|Ωi = ω

]
Proof. Let Ai2 (x) = E

[
V |H−i2 , X i

1 = x, X i
2 = 1

]
, which is the second-period

ask price i will be quoted having placed order x in the first round. The
expected second-period ask price is given by

Āi2 (ω, x) = E
[
Ai2 (x) |Ωi = ω

]
=

∑
v∈{0,1}

P
[
V = v|Ωi = ω

]
E
[
Ai2 (x) |Ωi = ω, V = v

]

Furthermore, the characterisation of ask prices in Appendix B implies that

Ai2 (x) =
1

1 + λQ
−i
b −Q

−i
s Λ (x, 1)

where Q−ix number of traders other than i that place order x in the first
round. λ and Λ are suitably defined likelihood ratios, with λ ∈ (0, 1) and
Λ > 0. Conditional on V = v and Ωi = ω, traders’ orders are independently
and identically distributed. Hence by the weak law of large numbers, Q

−i
b −Q

−i
s

N−1

converges to ϑv in probability5 conditional on V = v and Ωi = ω, where

ϑv = P
[
Xj

1 = b|V = v,Ωi = ω
]
− P

[
Xj

1 = s|V = v,Ωi = ω
]

Given equilibrium strategies, it is easy to show that ϑ0 < 0 and ϑ1 > 0.
5For a sequence of random variable Y (N), we say that Y (N) converges to Y in probability

conditional on C if for all ε > 0,

lim
N→∞

P
[∣∣∣Y (N) − Y

∣∣∣ ≥ ε|C
]
= 0
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Since λ ∈ (0, 1), we can then show that Ai2 (x) converges to v in probability
conditional on V = v and Ωi = ω for v ∈ {0, 1}. Hence we know that for all
ω and all x, Āi2 (ω, x) converges to P [V = 1|Ωi = ω] as required.

B Beliefs and prices

This appendix derives characterisations of players’ beliefs and equilibrium
prices. Some of these are used for the proofs of results in Section 3 and 4.
Others are used for the numerical solutions presented in Sections 4 and 5.

As a guide to the proofs in this appendix, note that for any event C, the fact
that P [V = 1] = 1

2
and Bayes’ rule imply

E [V |C] =
1

1 + P [C|V=0]
P [C|V=1]

(9)

Applying this rule to the competitive prices in Equation (1), we have

Ait =
1

1 +
P [Ht,Xi

t=b|V=0]
P [Ht,Xi

t=b|V=1]

(10)

Bi
t =

1

1 +
P [Ht,Xi

t=s|V=0]
P [Ht,Xi

t=s|V=1]

Furthermore, from the definition of public beliefs in (5), we find that public
belief after round t satisfies

Pt =
1

1 + P [Ht+1|V=0]
P [Ht+1|V=1]

(11)

First, we prove four lemmas characterising equilibrium prices in both trading
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rounds as well as public beliefs after both trading rounds.

Lemma B.1. Ask and bid prices at satisfy

Ai1 =
1

1 + λ

Bi
1 =

1

1 + λ−1

and therefore Ai1 = 1−Bi
1, where

λ =
1−µ
3

+ µ [qβ1 + (1− q) (1− α1 − β1)]
1−µ
3

+ µ [q (1− α1 − β1) + (1− q) β1]

Proof. Using the characterisation of equilibrium strategies in Section 3, it
follows that

P [X i
t = b|V = 0]

P [X i
t = bV = 1]

= λ

P [X i
t = h|V = 0]

P [X i
t = hV = 1]

= 1

P [X i
t = s|V = 0]

P [X i
t = s|V = 1]

= λ−1

and the result follows from Equation (10).

Lemma B.2. Let Qx =
∑N

i=1 1 (X i
1 = x) be the number of traders placing

order x in the first round. Then the public belief after t = 1 satisfies

P1 =
1

1 + λQb−Qs

Proof. Because traders’ orders are independent of each other conditional on
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V , we find that

P [H2|V = 0]

P [H2|V = 1]
= λQb−Qs

and the result follows from Equation (11).

Lemma B.3. Let Q−ix =
∑

j 6=i 1
(
Xj

1 = x
)
be the number of traders other

than i placing order x in the first round. Then ask and bid prices at t = 2

satisfy

Ai2 =
1

1 + λQ
−i
b −Q

−i
s Λ (X i

1, b)

Bi
2 =

1

1 + λQ
−i
b −Q

−i
s Λ (X i

1, s)

where λ is as defined in Lemma B.1, and

Λ (x1, x2) =
P [X i

1 = x1, X
i
2 = x2|V = 0]

P [X i
1 = x1, X i

2 = x2|V = 1]

Proof. Because traders’ orders are independent of each other conditional on
V , we find that

P [H2, X
i
2|V = 1]

P [H2, X i
2|V = 0]

= λQ
−i
b −Q

−i
s Λ

(
X i

1, X
i
2

)
and the result follows from Equation (10).

Lemma B.4. Let Qx1x2 =
∑N

i=1 1 (X i
1 = x1, X

i
2 = x2) be the number of traders

placing order x1 in the first round and x2 in the second. Then the public belief
after t = 2 satisfies

P2 =
1

1 + Λ̄Qbb−QssΛQhb−Qhs
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where

Λ̄ =
1−µ
9

+ µ (1− q) (1− α1)
1−µ
9

+ µq (1− α1)

and Λ =
1−µ
9

+ µ (1− q)α1

1−µ
9

+ µqα1

Proof. Because traders’ orders are independent of each other conditional on
V , we find that

P [H3|V = 0]

P [H3|V = 1]
=

N∏
i=1

Λ
(
X i

1, X
i
2

)
where the function Λ is as defined in Lemma B.3. Using the characterisation
of equilibrium strategies in Section 3, we have

Λ (b, b) =
1−µ
9

+ µ (1− q) (1− α1)
1−µ
9

+ µq (1− α1)
≡ Λ̄

Λ (s, s) = Λ̄−1

Λ (h, b) =
1−µ
9

+ µ (1− q)α1

1−µ
9

+ µqα1

≡ Λ

Λ (h, s) = Λ−1

Moreover, for all other pairs of x1 and x2, we have Λ (x1, x2) = 1, since those
sequences of orders would only ever be placed by a noise trader in equilibrium.
Hence, we have

P [H3|V = 0]

P [H3|V = 1]
= Λ̄Qbb−QssΛQhb−Qhs

and the result follows from Equation (11).

Next, we prove a result stating some properties of the posterior beliefs of
traders and dealers.

Lemma B.5. For t = 1, 2, the following are true with probability 1:
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1. Traders do not learn from their own actions:

E
[
V |Ht, X

i
t ,Ω

i
]

= E
[
V |Ht,Ω

i
]

= E
[
V |H−it ,Ωi

]
2. Ordering of posterior beliefs:

E
[
V |Ht,Ω

i = g
]
> E

[
V |Ht,Ω

i = n
]
> E

[
V |Ht,Ω

i = b
]

3. The difference between posteriors is bounded by the difference between
priors:

E
[
V |Ht,Ω

i = g
]
− E

[
V |Ht,Ω

i = b
]
< 2q − 1

4. Dealers can never rule our a noise trader:

P
[
Ωi = 0|Ht, X

i
t

]
> 0

Proof. 1. Note that

P
[
Ht, X

i
t ,Ω

i|V
]

= P
[
X i
t |Ht,Ω

i, V
]
P
[
Ht,Ω

i|V
]

= P
[
X i
t |Ht,Ω

i
]
P
[
Ht,Ω

i|V
]

. The second line holds because traders’ actions are independent of V con-
ditional on the history and i’s information. Hence,

P [Ht, X
i
t ,Ω

i|V = 0]

P [Ht, X i
t ,Ω

i|V = 1]
=
P [Ht,Ω

i|V = 0]

P [Ht,Ωi|V = 1]

which implies the first equality due to Equation 9. The argument for the
second equality is identical.

2. By (1.), it is sufficient to show that

E
[
V |H−it ,Ωi = g

]
> E

[
V |H−it ,Ωi = n

]
> E

[
V |H−it ,Ωi = b

]
35



Let Γ−i =
P [H−i

t |V=0]
P [H−i

t |V=1]
. Using the fact that traders’s signals are independent

conditional on V , we have the following three characterisations of likelihood
ratios:

P
[
H−it ,Ω

i = g|V = 0
]

P
[
H−it ,Ω

i = g|V = 1
] = Γ−i

1− q
q

P
[
H−it ,Ω

i = n|V = 0
]

P
[
H−it ,Ω

i = n|V = 1
] = Γ−i

P
[
H−it ,Ω

i = b|V = 0
]

P
[
H−it ,Ω

i = b|V = 1
] = Γ−i

q

1− q

The result follows directly from the fact that q > 1
2
and hence 1−q

q
< 1 < q

1−q .

3. Define the function F as follows:

F (y) =
1

1 + y 1−q
q

− 1

1 + y q
1−q

Note that F is twice continuously differentiable and that F (1) = 2q − 1.
Also note that

E
[
V |Ht,Ω

i = g
]
− E

[
V |Ht,Ω

i = b
]

= F
(
Γ−i
)

where Γ−i is defined as in (2.) above. Since Γ−i > 0, it is sufficient to show
that for all y > 0 such that y 6= 1,

F (y) < F (1)

Taking the first derivative of F shows that the only y > 0 such that F ′ (y) = 0

is y = 1. Also, it can be shown that F ′′ (1) < 0. Hence for all y ∈ (0, 1),

36



F ′ (y) > 0 and

F (1)− F (y) =

1ˆ

b

F ′ (z) dz > 0

Also, for all y > 1, F ′ (y) < 0 and

F (y)− F (1) =

bˆ

1

F ′ (z) dz < 0

which establishes the result.

4. By Bayes’ rule,

P
[
Ωi = n|Ht, X

i
t

]
=

P [Ht, X
i
t |Ωi = n]P [Ωi = n]∑

ω∈{g,b,n} P [Ht, X i
t |Ωi = ω]P [Ωi = ω]

Note that P [Ωi = n] = µ > 0 and

P
[
Ht, X

i
t |Ωi = n

]
≥ P

[
Ht, X

i
t | ∩Ni=1

{
Ωi = n

}]
> 0

with probability 1, since all sequences of orders are possible if everybody is a
noise trader. Hence, the expression above is strictly positive as required.

C Numerical procedures

C.1 Solving for equilibrium strategies

This subsection describes the numerical procedure required to solve for equi-
librium strategies given the parameters of the model, N , µ and q. This
procedure is used to produces Figures 1, 2 and 3 in Section 4 of the paper.
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In the Matlab package available from the author, it is executed by the script
alpha1graphs.m, which can be used to replicate the figures.

To find all possible equilibria given parameters, it is sufficient to find all
α1 ∈

[
0, 1

2

)
that satisfy one of the conditions in Proposition 3. The algorithm

used for every parameterisation is as follows:

1. Calculate G (0). If G (0) ≤ 0 then α1 = 0 is an equilibrium by the first
condition of Proposition 3.

2. For starting values αini1 ∈ {0, 0.05, ...., 0.45, 0.5}, solve the Equation
G (α1) = 0 numerically using αini1 as the starting value. If α1 > 0

at the solution, then α1 is an equilibrium by the second condition of
Proposition 3.

This algorithm requires us to compute G (α1) for any α1 ∈
[
0, 1

2

)
. In the

Matlab package, this is done by the function Gfun.m. Recall the definition
of G:

G (α1) =
[
Āi2 (g, b)− Āi2 (g, h)

]
−
[
q − Ai1

]
The second term is easily calculated using the characterisation of Ai1 in
Lemma B.1. For the first term, we still need to compute the expected ask
price Āi2 (ω, x) for x ∈ {b, h}. Using the characterisation of Ai2 in Lemma B.3,
this is given by

Āi2 (ω, x) = E
[
Ai2|Ωi = ω,X i

1 = x
]

=
∑

v∈{0,1}

P
[
V = v|Ωi = ω

]
E

[
1

1 + λQ
−i
b −Q

−i
s Λ (x, b)

|V = v

]

The conditional expectation inside the sum can be calculated by using the
fact that the joint distribution of Q−ib and Q−is conditional on V is trinomial,
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with joint probabilities as follows:

P
[
Q−ib = qb, Q

−i
s = qs|V = v

]
=

1

2

(N − 1)!

qb!qs!(N − 1− qb − qs)!
× (pvb)

qb (pvs )
qs (pvh)

N−1−qb−qs

where pvx = P [X i
1 = x|V = v]. The probabilities pvx are given by

p1b =
1− µ

3
+ µq (1− α1) = p0s ,

p1h =
1− µ

3
+ µα1 = p0h

p1s =
1− µ

3
+ µ (1− q) (1− α1) = p0b

C.2 Public beliefs

This subsection describes the numerical procedure required to calculate the
impact of equilibrium price manipulation on social learning, as measured
by the mean-square error (MSE) of the public belief after trading rounds
t ∈ {1, 2}. This procedure is used to produce Figure 4 in Section 5 of the
paper. In the Matlab package available from the author, it is executed by
the script MSEgraphs.m, which can be used to replicate the figures.

The algorithm used for every parameterisation is as follows:

1. Solve for the equilibrium α1 as described in Subsection C.1 above.

2. Calculate the MSE of the public beliefs given the equilibrium α1, i.e.
MSE (Pt).

3. Calculate the MSE of the public beliefs given α1 = 0, i.e. MSE (P 0
t ).

4. Calculate the percentage impact of manipulation on the MSE, i.e. Πt

as defined in Equation (7).
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Steps 2 requires us to compute MSE (Pt). We describe the necessary calcu-
lations below. Step 3 is executed using exactly the same calculations, but
replacing α1 with 0 everywhere. In the Matlab package, these calculations
are done by the function MSE.m.

First, consider P1, the public belief after the first trading round. Using the
definition of the mean-square error of P1 in Equation (6) and the character-
isation of public beliefs in Lemma B.2, we have

MSE (P1) = E
[
(P1 − V )2

]
=

∑
v∈{0,1}

P [V = v]E

[(
1

1 + λQb−Qs
− v
)2

|V = v

]

The conditional expectation inside the sum can be calculated by using the
fact that the joint distribution of Qb and Qs conditional on V is trinomial,
with joint probabilities as follows:

P [Qb = qb, Qs = qs|V = v] =
1

2

N !

qb!qs!(N − qb − qs)!
× (pvb)

qb (pvs )
qs (pvh)

N−qb−qs

where pvx = P [X i
1 = x|V = v]. The probabilities pvx are given by

p1b =
1− µ

3
+ µq (1− α1) = p0s ,

p1h =
1− µ

3
+ µα1 = p0h

p1s =
1− µ

3
+ µ (1− q) (1− α1) = p0b

Second, consider P2, the public belief after the second trading round. Us-
ing the definition of the mean-square error of P2 in Equation (6) and the
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characterisation of public beliefs in Lemma B.4, we have

MSE (P2) = E
[
(P2 − V )2

]
=

∑
v∈{0,1}

P [V = v]E

[(
1

1 + Λ̄Qbb−QssΛQhb−Qhs
− v
)2

|V = v

]

The conditional expectation inside the sum can be calculated by using the
fact that the joint distribution of the Qx1x2 variables conditional on V is
multinomial, with joint probabilities as follows:

P [(Qbb, Qss, Qhb, Qhs) = (qbb, qss, qhb, qhs) |V = v] =
1

2

N !

qbb!qss!qhb!qhs!qr!

× (pvbb)
qbb (pvss)

qss (pvhb)
qhb (pvhs)

qhs (pvr )
qr

where

pvx1x2 = P
[
X i

1 = x1, X
i
2 = x2|V = v

]
qr = N − qbb − qss − qhb − qhs
pvr = 1− pvbb − pvss − pvhb − pvhs

The required probabilities pvx1x2 are given by

p1bb =
1− µ

9
+ µq (1− α1) = p0ss

p1hb =
1− µ

9
+ µqα1 = p0hs
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